Creating a Coreference Resolution System for Polish

Mateusz Kopeć and Maciej Ogrodniczuk Institute of Computer Science, Polish Academy of Sciences ul. Jana Kazimierza 5, Warsaw, Poland

CORE project

General information

The Computer-based methods for coreference resolution in Polish texts project (CORE) financed by the Polish National Science Centre (contract number 6505/B/T02/2011/40).

Project time frame: 2011–2014.

Project mission

Create methods and tools for **automated anaphora and coreference**

Used features

- First_Mention extracting information, whether given mention is the first one in its mention chain
- FirstSecondPerson checking if mentions are first or second person
- Gender, Number extracting compatibility of gender/number of two mentions
- HeadMatch comparing heads of mentions
- MentionType, MentionType_Anaphor, MentionType_Salience providing a number of features based on mention types (for example if they are pronouns or reflexive pronouns)
- DistDiscrete, SentenceDistance providing information about text distance between mentions in terms of sentences
- resolution of Polish by preparation of:
- ► Typology of Polish coreference.
- Polish coreferential corpus a subset of the National Corpus of Polish (NKJP) manually annotated with coreferential chains.
- IT tools for coreference resolution (rule-based, statistical, hybrid) and their evaluation.

SYSTEM DESCRIPTION

Scope of the current task

Adapt a well-known statistical system – BART: Beautiful Anaphora Resolution Toolkit (Versley et al., 2008) to Polish language and initially compare it with the first, rule-based approach and provide valuable experience for the multilingual users of BART.

BART architecture

Language Plugin

StringKernel, StringMatch, LeftRightMatch – feature extractors based on orthographic similarity of mentions.

DATA SETS AND EVALUATION

Evaluation data

- ▶ 15 randomly selected text samples of about 20 sentences each,
- ► 1737 mentions,
- ► 1262 mention chains,
- ▶ the average size of mention chain: 1.37 mentions.

Mention chain length																Any
Number of chains	1079	88	43	20	9	6	3	2	2	5	1	1	1	1	1	1262

Table: Mention chains size statistics

Experimental results

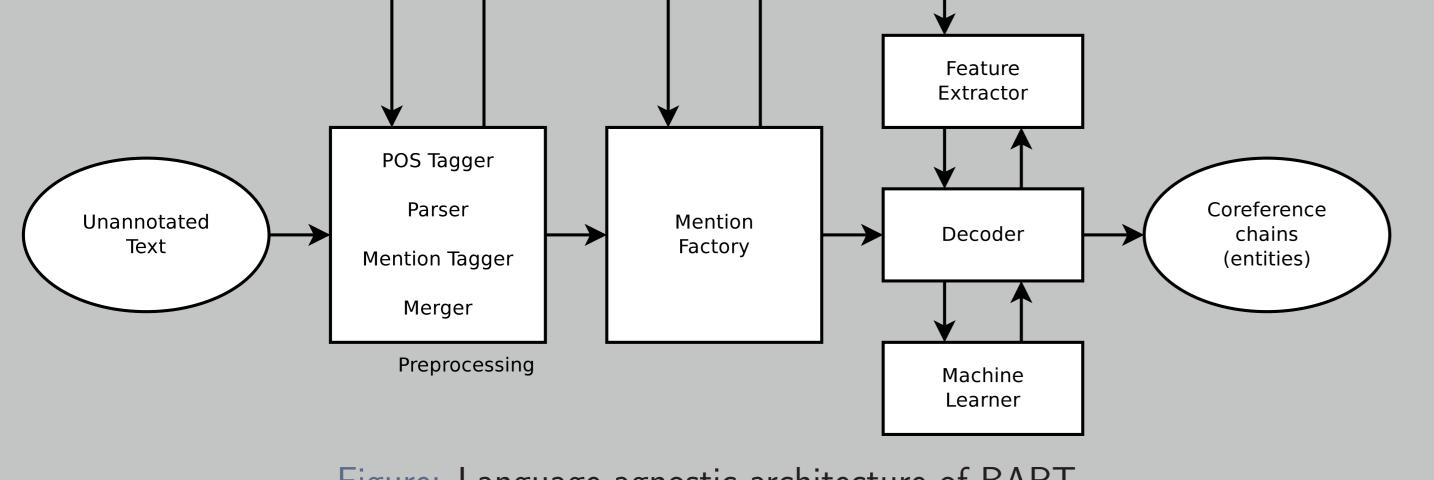


Figure: Language-agnostic architecture of BART

BART for Polish

Adjusting BART for Polish required following steps:

- preprocess the coreference corpus to add morphosyntactic, shallow parse and named entity layers,
- convert the corpus to MMAX format (Müller and Strube, 2006) with 3 layers:
- the segmentation layer,
- the markable layer,
- ▷ the coreference layer,
- select language-agnostic or language-adaptable feature extractors,
 configure the Polish Language Plugin,
 conduct the experiment.

Sustan tura	MUC								
System type	R	Р	F1						
BART	65.11%	58.06%	61.38%						
Rule-based	66.23%	63.77%	64.98%						
	B ³								
	R	Р	F 1						
BART	89.17%	87.27%	88.21%						
Rule-based	88.94%	89.81%	89.37%						
	CEAFM								
	R	Ρ	F 1						
BART	82.34%	82.34%	82.34%						
Rule-based	83.94%	83.94%	83.94%						
	CEAFE								
	R	Р	F 1						
BART	83.80%	87.06%	85.40%						
Rule-based	86.54%	87.59%	87.06%						
	BLANC								
	R	Р	F 1						
BART	76.20%	81.09%	78.43%						
Rule-based	75.10%	83.70%	78.75%						

Table: Comparison of two systems

Preprocessing

Preprocessing was carried out outside BART and involved:
1. POS tagging with Pantera/Morfeusz SGJP (http://clip.ipipan.waw.pl/PANTERA),
2. NP chunking with Spejd shallow parser (http://clip.ipipan.waw.pl/Spejd),
3. NE recognition with NERF tool (http://clip.ipipan.waw.pl/Nerf).

CONCLUSIONS

Next steps

- Train and evaluate BART on a bigger corpus of better quality, which annotation is under way,
- adapt for Polish other machine learning coreference resolution tools such as RARE (Cristea et al., 2002) and Reconcile (Stoyanov et al., 2010) and compare their accuracy with BART,
- ► incorporate existing preprocessing tools for Polish into BART.

http://clip.ipipan.waw.pl/CORE/

maciej.ogrodniczuk@ipipan.waw.pl, mateusz.kopec@ipipan.waw.pl