Translation- and Projection-Based Coreference Resolution for Polish

Maciej Ogrodniczuk | Institute of Computer Science | Polish Academy of Sciences

Language Processing and Intelligent Information Systems Warsaw, June 18, 2013 Noun phrase coreference resolution

Two-step process:

- 1 Identify mentions
- 2 Build coreference chains with mentions having identical referent

What it really means (here):

- Mention = NP = a group of adjacent words having nominal head, e.g. pronouns, proper nouns, nominal groups etc.
- 2 Nesting allowed: <u>dyrektor departamentu</u> (EN: director of the department)
- 3 Identity of reference

Noun phrase coreference resolution

Two-step process:

- 1 Identify mentions
- 2 Build coreference chains with mentions having identical referent

What it really means (here):

- Mention = NP = a group of adjacent words having nominal head, e.g. pronouns, proper nouns, nominal groups etc.
- 2 Nesting allowed: <u>dyrektor departamentu</u> (EN: director of the department)
- 3 Identity of reference

Why is CR difficult?

Because it's complex:

Development of associated linguistic data requires substantial effort:

- language-specific rules
- training data for statistical approaches
- knowledge-intensive resources.

But:

While there are no efficient coreference resolution tools for language A ("resource-scarce"), there can be such tools for language B ("resource-rich"), so why not use translation and projection?

Why is CR difficult?

Because it's complex:

Development of associated linguistic data requires substantial effort:

- language-specific rules
- training data for statistical approaches
- knowledge-intensive resources.

But:

While there are no efficient coreference resolution tools for language A ("resource-scarce"), there can be such tools for language B ("resource-rich"), so why not use translation and projection?

The simpler plan:

A translation/projection-based approach:

- translate the text in A to B,
- resolve coreference in *B* text using state-of-the art tools,
- transfer the produced annotations from *B* to *A*:
 - mentions discourse world entities
 - clusters sets of mentions referring to the same entity.

Why not try it for Polish?

What would we need to do?

- prepare the X-Polish translate-resolve-project tool
- evaluate the result (on a corpus of Polish general coreference)
- compare the results with other solutions of this type for Polish and other languages.

Previous CR projection attempts

English-Romanian:

- Harabagiu and Maiorano (2000): manual translation of the MUC-6 corpus into Romanian and manual projection of the English annotations to Romanian
- Postolache et al. (2006): automatic word alignment, projection of manual annotations and manual error-fixing.

Different approaches, different goals:

- deep language-related knowledge involved vs. knowledge-lean
- manually annotated data-based vs. fully automatic
- restricted to the given language pair vs. technology applicable to a larger number of languages.

Previous CR projection attempts

English-Romanian:

- Harabagiu and Maiorano (2000): manual translation of the MUC-6 corpus into Romanian and manual projection of the English annotations to Romanian
- Postolache et al. (2006): automatic word alignment, projection of manual annotations and manual error-fixing.

Different approaches, different goals:

- deep language-related knowledge involved vs. knowledge-lean
- manually annotated data-based vs. fully automatic
- restricted to the given language pair vs. technology applicable to a larger number of languages.

Rahman and Ng's solution

Basic assumptions:

- translation with Moses
- alignment with GIZA++
- coreference resolution with Reconcile
- evaluated for Spanish and Italian with projection from English.

Rahman and Ng's solution results

F1 for 3 settings:

- no linguistic tools available; not only coreference clusters, but also complete mentions are projected:
 ES: 37.6%, IT: 21.4%
- existing mention extractors are employed:ES: 54.9%, IT: 46.8%
- 3 all available linguistic processing tools are used to generate features and train coreference resolvers on the projected coreference annotation: ES: 57.7%, IT: 51.7%.

Non-projection-based state-of the art:

Coreference Resolution in Multiple Languages CoNLL shared task results, 2010: **ES: 60.0%**, **IT: 49.6%**.

Rahman and Ng's solution results

F1 for 3 settings:

- no linguistic tools available; not only coreference clusters, but also complete mentions are projected:
 ES: 37.6%, IT: 21.4%
- existing mention extractors are employed:ES: 54.9%, IT: 46.8%
- 3 all available linguistic processing tools are used to generate features and train coreference resolvers on the projected coreference annotation: ES: 57.7%, IT: 51.7%.

Non-projection-based state-of the art:

Coreference Resolution in Multiple Languages CoNLL shared task results, 2010: **ES: 60.0%**, **IT: 49.6%**.

Combination of Rahman and Ng's settings 1 and 2 for Polish:

- Polish text translated into English and mentions identified (as with setting 2)
- English coreference resolver running on plain English text (not on pre-identified Polish mentions transferred to English as with setting 1)
- **3** English coreference clusters used to form Polish clusters using original Polish mentions aligned with English mentions.

Reasons for the experiment:

- To test whether it lets avoid errors resulting e.g. from incorrect classification of nominal constituents of idiomatic expressions as referential.
- With no mentions predefined, the resolver can exclude non-referential expressions in the very first step of the process.

System components

Major modules:

1 Google Translate (University Research Program variant):

- translation
- word-to-word alignment
- 2 Polish mention detectors from CORE project:
 - PoliMorf morphological analyser and Pantera tagger for single-word nominal constructs
 - Spejd shallow parser and Spejd grammar of Polish for noun phrases (with nesting and mention boundaries)
 - Nerf for NE recognition
- **3** Stanford CoreNLP used for English mention detection and coreference resolution.

Why Google Translate?

Two reasons:

- 1 concentrating the two steps of the process into one
- offering better coherence of the result due to internal dependence of both steps translation and alignment.

Resolution algorithm

Translation and projection-based coreference resolution:

detect *pl-mentions* in *pl-text* translate *pl-text* into *en-text* with word-to-word alignment run en-coreference resolution tool on en-text to detect *en-mentions* and *en-clusters* for all *en-clusters* (including singletons) do for all en-mentions in en-cluster do if exists alignment between en-mention head with any *pl-mention* head **then** put *pl-mention* in *pl-cluster* corresponding to *en-cluster* end if end for end for for all *pl-mentions* not in any *pl-cluster* do create singleton *pl-clusters* end for

Evaluation data

Mentions:

Texts from the Polish Coreference Corpus:

- 260 gold samples (all available at that time)
- each sample between 250 and 350 segments
- manually annotated with information on mentions and coreference clusters.

Mention statistics		
Gold mentions	23069	
Sys mentions	21861	
Common mentions	15060	

Mention detection results		
Precision	68.89%	
Recall	65.28%	
F1	67.04%	

Translation- and projection-based approach:

All usual evaluation metrics have been calculated by comparing projection results with the golden data:

Evaluation metrics	Р	R	F
B ³	93.34%	84.20%	88.53%
CEAFM	81.51%	81.51%	81.51%
CEAFE	81.06%	89.62%	85.12%
BLANC	71.43%	60.51%	64.01%
CONLL	74.90%	67.81%	70.31%

Discussion of results

Two general findings:

- first of all: a useful baseline for languages still lacking coreference resolution tools
- for Polish: the experiment was interesting, but we have better systems now

Further work:

- using the translation-projection method to build coreference resolvers for new languages
- coreference resolution by voting
- testing the approach on Rahman-Ng data set.

Discussion of results

Two general findings:

- first of all: a useful baseline for languages still lacking coreference resolution tools
- for Polish: the experiment was interesting, but we have better systems now

Further work:

- using the translation-projection method to build coreference resolvers for new languages
- coreference resolution by voting
- testing the approach on Rahman-Ng data set.

The CORE project

Project factsheet:

- Computer-based methods for coreference resolution in Polish texts
- A National Science Centre grant 6505/B/T02/2011/40
- Duration: 2011-2014
- Principal investigator: Maciej Ogrodniczuk

Project summary:

- Create innovative methods and tools for automated anaphora and coreference resolution in Polish texts
- 2 Create a corpus of Polish annotated with coreferential chains
- **3** Test various coreference resolution approaches on the annotated data (rule-based, statistical, hybrid etc.)

It's question time!