

Rule-based coreference resolution for Polish

Maciej Ogrodniczuk and Mateusz Kopeć Institute of Computer Science, Polish Academy of Sciences

CORE project

General information

The Computer-based methods for coreference resolution in Polish texts project (CORE) financed by the Polish National Science Centre (contract number 6505/B/T02/2011/40).

Project time frame: 2011–2014.

Project mission

Create methods and tools for **automated anaphora and coreference** resolution of Polish by preparation of:

DATA SETS AND EVALUATION

Rule set

- gender/number rule eliminates syntactically incompatible matches (e.g. wrt. gender or number),
- 2. including rule eliminates nested groups,
- 3. lemma rule, for nominal groups only, promotes head matches,
- 4. wordnet rule, for nominal groups with wordnet representation; investigates synonyms, hyperonyms, alternyms and fuzzynyms,
- 5. pronoun rule, promotes matching pronouns.

- Typology of Polish coreference.
- Polish coreferential corpus a subset of the National Corpus of Polish (NKJP) manually annotated with coreferential chains.
- ► IT tools for coreference resolution (rule-based, statistical, hybrid) and their evaluation.

SYSTEM DESCRIPTION

Scope of the current task

Create the first noun phrase coreference resolution system for Polish, intended to provide the starting ground for further experiments and a useful reference baseline.

Mention detection

- POS tagging with Pantera/Morfeusz SGJP,
- **NP chunking** with Spejd shallow parser,
- NE recognition with NER tool,
- Wordnet-based processing with plWordNet.

Working data set

- ► 50 randomly selected text samples from NKJP,
- ▶ 20-sentence-length,
- ▶ 6500 mentions altogether,
- average mention length: 1.9 tokens,

Evaluation data

- ▶ 15 randomly selected text samples,
- ▶ 1737 mentions,
- ▶ 1262 mention chains,
- ► average chain size: 1.37 mentions.

Chain length	1	2	3	4	5	6	710	1127
Number of chains	1079	88	43	20	9	6	25	1

Experimental results

System type		MUC		CEAF			
System type	R	Р	F 1	R	Р	F 1	
All-singletons			1	85.9%	58.2%	69.4%	
All-singletons $+$ head	58.2%	48.1%	52.7%	76.6%	69.4%	72.8%	
5 rules	65.2%	43.3%	52.1%	71.5%	70.6%	71.0%	
4 rules (no wordnet)	64.4%	47.3%	54.6%	75.7%	71.6%	73.6%	
		B ³		BLANC			
	R	Ρ	F 1	R	Ρ	F 1	
All-singletons	69.6%	80.9%	74.8%	50.0%	46.5%	48.2%	
All-singletons $+$ head	81.2%	71.1%	75.8%	54.0%	79.3%	55.5%	
5 rules	82.6%	65.9%	73.3%	54.2%	72.5%	55.9%	
4 rules (no wordnet)	82.4%	69.2%	75.3%	54.3%	77.6%	56.0%	

Coreference resolution

Few rich linguistic features (cf. Haghighi and Klein): 1. syntactic constraints (elimination of nested nominal groups), 2. syntactic filters (elimination of syntactic incompatible heads), 3. semantic filters (wordnet-derived compatibility), 4. selection (weighted scoring).

Visualisation: internal prototype

CONCLUSIONS

Next steps

- **zero anaphora detection** experiments,
- wider range of coreference constructs such as identity of sense,
- typization of coreferential links,
- refinement of grammar used for identification of mentions,
- machine learning experiments,
- feature base expansion (from deep parse results, fact bases etc.)

Synergies with CIP ICT-PSP projects

ATLAS – Applied Technology for Language-Aided CMS (http://www.atlasproject.eu): CR for text summarization, CESAR – CEntral and South-east europeAn Resources, part of META-NET (http://www.meta-net.eu/projects/cesar) - Polish LRTs made available in META-SHARE repository.